

Programming

&

Data Structures

For

Computer Science

&

Information Technology

By

www.thegateacademy.com

✆080-40611000

http://www.thegateacademy.com/

Syllabus

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com

Syllabus for Programming and Data Structures

Programming in C, Recursion, Arrays, Stacks, Queues, Linked Lists, Trees, Binary Search Trees,

Binary Heaps, Graphs.

Previous Year GATE Papers and Analysis

GATE Papers with answer key

Subject wise Weightage Analysis

thegateacademy.com/gate-papers

thegateacademy.com/gate-syllabus

http://www.thegateacademy.com/

 Contents

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com i

Contents

Chapters Page No.
#1. Introduction to ‘C’ Programming and Array 1 – 51

 C Programming 1 – 3

 Basic Datatypes 3 – 5

 Variable Types 6 – 10

 Operators 11 – 14

 Flow Control Statements 15 – 19

 Pointers 19 – 28

 Functions and Variables 28 – 30

 Strings 30 – 32

 Working with Files 32 – 37

 Macro 38

 Dynamic Memory Allocation 38 – 39

 Arrays 40 – 41

 Memory as an Array 41 – 44

 User Defined Data types 45 – 47

 Abstract Data Types (ADT) 48 – 49

 Recursion 50 – 51

#2. Linked List 52 – 70
 Linked List 52 – 56

 Memory Allocation: Garbage Collection 56 – 57

 Operation on Linked List 57 – 64

 Header Linked Lists 64 – 66

 Circular Linked List 67

 Doubly Linked List 67

 Operation on DLL 68 – 70

 Application of Linked List 70

#3. Stacks and Queues 71 – 91
 Stacks 71 – 72

 Stack ADT Implementations 72 – 74

 The Stack Permutation 74 – 78

 Binary Expression Tree 78 – 82

 Queue 82 – 84

 Linked Representation of Queue 84 – 88

 Queue Operations 88 – 89
 Queue Applications 89 – 91

#4. Trees 92 – 111
 Binary Tree 92 – 94

http://www.thegateacademy.com/

 Contents

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com ii

 Height Analysis 94 – 95

 Tree Traversals 95 – 99

 Binary Search Trees 100

 Basic BST Operations 100 – 105

 AVL Trees 105 – 106

 Advantage of AVL Tree 106 – 111

#5. Priority Queues (Heaps) 112 – 123
 Introduction 112

 Binary Heap 112 – 115

 Array Representation of Binary Heap 115 – 116

 Min-Heap vs. Max-Heap 116

 Basic Heap Operation 116 – 123

 #6. Graph 124 – 132
 Important Points 124 – 125

 Representation of Graphs 125

 Graph Traversal Algorithm 125 – 129

 Disjoint Set Data Structure 130 – 132

 Connected Components 132

Reference Books 133

http://www.thegateacademy.com/

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 1

“Obstacles are those frightful things you can

see when you take your eyes off your goal."

…Henry Ford

Introduction to ‘C’ Programming

and Array

Learning Objectives
After reading this chapter, you will know:

1. C Programming
2. Basic Datatypes
3. Variable Types
4. Operators
5. Flow Control Statements
6. Pointing to Data
7. Functions and Variables
8. Strings
9. Working with Files
10. Macro Caveats
11. Dynamic Memory Allocation
12. Arrays
13. Memory as an Array
14. User Defined Data types
15. Abstract Data Types (ADT)
16. Recursion

C Programming

Basic Introduction

C is a general-purpose high level language that was originally developed by Dennis Ritchie for the

Unix operating system. The Unix operating system and all Unix applications are written in the C

language. C has now become a widely used professional language for various reasons.

 Easy to learn

 Structured language

 It produces efficient programs

 It can handle low-level activities

 It can be compiled on a variety of computers

Facts about C

 C was invented to write an operating system called UNIX

 C is a successor of B language which was introduced around 1970

 The language was formalized in 1988 by the American National Standard Institute (ANSI)

 By 1973 UNIX OS almost totally written in C

 Today C is the most widely used System Programming Language

 Most of the state of the art software have been implemented using C

1

C
H

A
P

T
E

R

http://www.thegateacademy.com/

 Introduction to ‘C’ Programming and Array

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 2

Why to use C?

C was initially used for system development work, in particular the programs that make-up the

operating system. C was adopted as a system development language because it produces code that

runs nearly as fast as code written in assembly language. Some examples of the use of C might be:

 Operating Systems

 Language Compilers

 Assemblers

 Text Editors

 Print Spoolers

 Network Drivers

 Modern Programs

 Data Bases

 Language Interpreters

 Utilities

C Program File

All the C programs are written into text files with extension ".c" for example hello.c. You can use "vi"

editor to write your C program into a file.

Program Structure: A C program basically has the following form:

 Preprocessor Commands

 Functions

 Variables

 Statements & Expressions

 Comments

The following program is written in the C programming language. Open a text file hello.c using vi

editor and put the following lines inside that file.

#include <stdio.h>

int main()

{

 printf("Hello, Tech Preparation! \n");

 return 0;

}

Preprocessor Commands: These commands tells the compiler to do preprocessing before doing

actual compilation. For example #include <stdio.h> is a preprocessor command which tells a C

compiler to include stdio.h file before going to actual compilation. You will learn more about C

Preprocessors in C Preprocessors session.

Functions: Functions are main building blocks of any C Program. Every C Program will have one or

more functions and there is one mandatory function which is called main() function. This function is

prefixed with keyword int which means this function returns an integer value when it exits. This

integer value is returned using return statement (main function also return void).

The C Programming language provides a set of built-in functions. In the above example printf() is a

C built-in function which is used to print anything on the screen.

http://www.thegateacademy.com/

 Introduction to ‘C’ Programming and Array

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 3

Variables: Variables are used to hold numbers, strings and complex data for manipulation. You will

learn in detail about variables in C Variable Types.

Statements & Expressions: Expressions combine variables and constants to create new values.

Statements are expressions, assignments, function calls, or control flow statements which make up C

programs.

Comments: Comments are used to give additional useful information inside a C Program. A

command can be a multiple line or single line. Multiple line comments will be put inside /*...*/ and

single line commands written after //.

Note:

 C is a case sensitive programming language. It means in C printf and Printf will have different

meanings.

 C has a free-form line structure. End of each C statement must be marked with a semicolon.

 Multiple statements can be one the same line.

 White Spaces (ie tab space and space bar) are ignored.

 Statements can continue over multiple lines.

C program Compilation

To compile a C program you would have to Compiler name and program files name. Assuming your

compiler's name is cc and program file name is hello.c, give following command at Unix prompt.

$cc hello.c

This will produce a binary file called a.out and an object file hello.o in your current directory. Here

a.out is your first program which you will run at Unix prompt like any other system program. If you

don't like the name a.out then you can produce a binary file with your own name by using -o option

while compiling C program. See an example below

$cc -o hello hello.c

Now you will get a binary with name hello. Execute this program at Unix prompt but before

executing / running this program.

Basic Datatypes
C has a concept of 'data types' which are used to define a variable before its use. The definition of a

variable will assign storage for the variable and define the type of data that will be held in the

location.

The value of a variable can be changed any time.

C has the following basic built-in datatypes.

 int

 float

 double

 char

Please note that there is not a Boolean data type. C does not have the traditional view about logical

comparison, but that's another story.

int - data type: int is used to define integer numbers.

http://www.thegateacademy.com/

 Introduction to ‘C’ Programming and Array

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 4

{
 int count;
 count = 5;
}

float - data type: float is used to define floating point numbers.

{
 float Miles;
 Miles = 5.6;
}

double - data type: double is used to define BIG floating point numbers. It reserves twice the storage
for the number. On PCs this is likely to be 8 bytes.

{
 double Atoms;
 Atoms = 2500000;
}

char - data type: char defines characters.

{
 char Letter;
 Letter = 'x';
}

Modifiers

The data types explained above have the following modifiers.

 short

 long

 signed

 unsigned

The modifiers define the amount of storage allocated to the variable. The amount of storage

allocated is not cast in stone. ANSI has the following rules:

short int ⇐ int ⇐ long int

float ⇐ double ⇐ long double

What this means is that a 'short int' should assign less than or the same amount of storage as an 'int'

and the 'int' should be less or the same bytes than a 'long int'. What this means in the real world is:

Type Bytes Range

Short int 2 −32,768 to + 32,767 (32kb)

Unsigned short int 2 0 to + 65,535 (64kb)

Unsigned int 4 0 to + 4,294,967,295 (4Gb)

Int 4 −2,147,483,648 to + 2,147,483,647 (2Gb)

Long int 8 −2,147,483,648 to + 2,147,483,647 (2Gb)

Signed char 1 −128 to + 127

Unsigned char 1 0 to + 255

Float 4

Double 8

Long double 10

http://www.thegateacademy.com/

 Introduction to ‘C’ Programming and Array

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 5

These figures only apply to today's generation of PCs. Mainframes and midrange machines could use

different figures, but would still comply with the rule above.

You can find out how much storage is allocated to a data type by using the sizeof operator discussed

in Operator Types Session.

Here is an example to check size of memory taken by various datatypes.

int main()

{

printf("sizeof(char) = %d\n", sizeof(char));

printf("sizeof(short) = %d\n", sizeof(short));

printf("sizeof(int) = %d\n", sizeof(int));

printf("sizeof(long) = %d\n", sizeof(long));

printf("sizeof(float) = %d\n", sizeof(float));

printf("sizeof(double) = %d\n", sizeof(double));

printf("sizeof(long double) = %d\n", sizeof(long double));

printf("sizeof(long long) =%d\n", sizeof(long long));

return 0;

}

Qualifiers

A type qualifier is used to define the declaration of a variable, a function, and parameters, specifying

whether:

 The value of a variable can be changed.

 The value of a variable must always be read from memory rather than from a register

Standard C language recognizes the following two qualifiers:

 const

 volatile

The const qualifier is used to tell C that the variable value cannot change after initialization.

const float pi=3.14159;

Now pi cannot be changed at a later time within the program.

Another way to define constants is with the #define preprocessor which has the advantage that it

does not use any storage

The volatile qualifier declares a data type that can have its value changed in ways outside the

control or detection of the compiler (such as a variable updated by the system clock or by another

program). This prevents the compiler from optimizing code referring to the object by storing the

object's value in a register and re-reading it from there, rather than from memory, where it may

have changed. You will use this qualifier once you will become expert in "C". So for now just proceed.

http://www.thegateacademy.com/

 Introduction to ‘C’ Programming and Array

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 6

Variable Types
A variable is just a named area of storage that can hold a single value (numeric or character). The C

language demands that you declare the name of each variable that you are going to use and its type,

before you actually try to do anything with it.

The Programming language C has two main variable types

 Local Variables

 Global Variables

Local Variables

 Local variables scope is confined within the block or function where it is defined. Local

variables must always be defined at the top of a block.

 When a local variable is defined - it is not initialized by the system(garbage value), (Storage

class will tell to system during execution what value it will get) initialize it yourself.

 When execution of the block starts the variable is available, and when the block ends the

variable 'dies'.

Check following example's output

main()

{

int i=4;

int j=10;

i++;

if (j > 0)

{

/* i defined in 'main' can be seen */

printf("i is %d\n",i);

}

if (j > 0)

{

/* 'i' is defined and so local to this block */

int i=100;

printf("i is %d\n",i);

}

/* 'i' (value 100) dies here */

printf("i is %d\n",i); /* 'i' (value 5) is now visable.*/

}

This will generate following output

i is 5

i is 100

i is 5

http://www.thegateacademy.com/

	Coverpage
	Syllabus
	Content
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Reference book

